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Abstract--This paper reports the analytical and numerical results on double diffusive natural convection 
in a binary fluid contained in a two-dimensional enclosure where horizontal temperature and concentration 
differences are specified. A numerical code, based on a finite volume procedure, and a scaling law approach 
are used to analyse the influence of the different parameters which characterize those thermosolutal flows: 
in this first paper, the mass transfer problem is studied in the steady-state, A general mass transfer 
correlation is proposed, which is valid over a wide range of parameters. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Thermosolutal natural convection is present in many 
industrial processes, especially those involving phase 
change phenomena (melting or solidification). For 
instance, the growth of a solid phase from a binary 
melt due to a temperature gradient causes solute redis- 
tribution at the solidification front and the com- 
position of the liquid phase undergoes local changes. 
The subsequent density gradient combines to the ther- 
mal effect and a two component buoyancy force is 
induced in the fluid. 

The bibliography reveals a great number of studies 
on double diffusion convection, due to the industrial 
or technological importance of the fields of appli- 
cation (materials processing, oceanography, as 
reported by Chen and Johnson [1]). Three main con- 
figurations have been considered in the previous 
works : 

(1) double diffusion in an horizontal layer with ver- 
tical temperature and concentration gradients ; 

(2) sideways heating of an initially stratified fluid 
layer ; 

(3) thermosolutal natural convection due to hori- 
zontal temperature and concentration gradients. 

The present study is concerned with this latter situ- 
ation. In this field, the early analytical studies have 
been mainly dedicated to the analysis of limited prob- 
lems : either the Lewis number is of order 1, as in the 
asymptotic methods proposed by Saville and Chur- 
chill [2], or Gebhart and Pera [3], or one component of 
the buoyancy term is dominating, as in the analytical 
approach by Bejan [4] which leads to the scaling laws 

t Present address: IUSI, rue d'Eragny, 95031 Neuville- 
sur-Oise, France. 

in the heat transfer driven or mass transfer driven 
regimes. 

The main studies on thermosolutal natural con- 
vection in enclosures may be classified according to 
the order of magnitude of the Lewis number 
(Le = thermal diffusivity/molecular diffusivity). The 
range of low and moderate Le numbers (Le~ !-10) 
refers to double diffusion in binary gases. Few exper- 
iments are available [5], but many numerical results 
have been published, because the numerical problem 
is close to the thermal convection problem. The high 
Lewis number domain (Le of order 102 and more) is 
related to thermosolutal convection in liquids : it leads 
to more complex situations in terms of heat and mass 
transfer, and to more interesting challenges from both 
the numerical and the experimental standpoints. 

During the last 10 years, a number of experimental 
and analytical studies have dealt with situations where 
the temperature and concentration boundary con- 
ditions are specified at the vertical walls of a confined 
cavity. The experimental studies generally use aque- 
ous solutions (NaC1, Na2CO3 or CuSO4 solutions), 
corresponding to a Prandtl number of 7, and to a 
Lewis number of order 200 [6--9]. Experimentally, the 
main problem is to impose uniform and constant con- 
centrations at a wall. Lee et al. [7] used membranes to 
separate the cell containing the working binary fluid 
from the regulated temperature and concentration 
baths. Kamotani et al. [6] and Han and Kuehn [8] 
developed an electrochemical technique to impose the 
concentrations at the copper heat exchangers used as 
electrodes. In reality, the spatial uniformity of the 
wall concentration has not been verified and the mean 
value is proved to change with time. The conclusions 
of these studies are thus limited. 

The first numerical simulations and analytical cal- 
culations of thermosolutal natural convection in 
enclosures due to horizontal temperature and con- 
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NOMENCLATURE 

A aspect ratio of the enclosure, H/L 
C dimensional concentration 
D mass diffusivity 
,q intensity of gravity 
Grs solutal Grashof number based on 

H, ffflsACH3/v 2 
Grv thermal Grashof number based on 

H, gflTA TH3/v 2 
H(L) height (width) of the enclosure 
i(k) unit vector in the horizontal (vertical) 

direction 
k thermal conductivity 
Le Lewis number: Sc/Pr 
N buoyancy ratio : Grs/Grs 
Nu average Nusselt number 

(dimensionless heat flux) 
P dimensionless pressure 
Pr Prandtl number, v/7 
Sc Schmidt number, v/D 
Sh average Sherwood number 

(dimensionless mass flux) 
T dimensional temperature 
u(w) horizontal (vert.) dimensionless 

component of velocity 
V* dimensional velocity 
V dimensionless velocity 
Ws vertical velocity scale on the solutal 

boundary layer scale 
wr vertical velocity scale on the thermal 

boundary layer scale 
x* (z*) dimensional horizontal (vertical) 

coordinate 

x(z) dimensionless coordinate, 
x*!H(z*/n). 

Greek symbols 
thermal diffusivity 

fly coefficient of volumetric expansion 
with temperature 

[~s coefficient of volumetric expansion 
with concentration 

AC concentration difference between 
plates, (7,, - ("~ 

A T temperature difference between plates, 
~ - -  T~ 

6T thermal boundary layer thickness 
6s solutal boundary layer thickness 
v kinematic viscosity 
/t viscosity 
~h dimensionless concentration : 

( C -  (Ce + Ct)/2)/AC 
I~ fluid density 
0 dimensionless temperature : 

( T -  ( ~ +  Ti)/2)/zX T. 

Subscripts 
0 reference 
I hot side 
2 cold side 
eq. equivalent 
H based on H 
S solutal 
T thermal. 

centration gradients at moderate values of the Lewis 
number are proposed by Trevisan and Bejan [10], 
Ranganathan and Viskanta [1 l], B6nard et al. [12], 
Lee and Hyun [13], Weaver and Viskanta [5] and 
B6ghein et al. [14]. Most studies are concerned with 
Lewis numbers close to 1, which considerably limit 
the scope of the results. Indeed, the problem of ther- 
mosolutal convection at Le = 1 is identical to the 
classical problem of thermal natural convection, with 
an effective Grashof number resulting from the 
addition of the thermal and solutal Grashof numbers. 
Partial numerical results considering high Lewis num- 
bers have been obtained by Han and Kuehn [8] and 
Shyy and Chen [15]. 

The symmetry of the boundary conditions applied 
at the vertical walls allows for the existence of a steady- 
state solution. Nevertheless, in the opposing case, the 
observations show that, under some conditions, non- 
stationary or fluctuating behaviours may be found 
[16, 17]. 

Among the aforementioned studies, a few papers 
indicate the existence of multicellular flow structures 

[18], but the theoretical prediction of the transition 
from a monocellular to a multicellular regime has 
still to be discussed. This aspect is presented in the 
companion paper. Concerning the heat and mass 
transfer characteristics, orders of magnitude have 
been proposed by Bejan in the extreme situations 
where either the thermal or the solutal effect is dom- 
inating the flow [4], and no general expression for the 
Nusselt or Sherwood numbers is available over a wide 
range of parameters. 

The present study will be mainly dedicated to 
steady-state solutions for cooperating buoyancy forces 
(the thermal and solutal terms act in the same 
direction). This restriction is due to the non-sta- 
tionarity that may appear in the opposing situation, 
as mentioned by several experimental studies [6, 9, 
16]. Also, only the case of fluids presenting a Prandtl 
number larger than unity will be considered (for the 
Pr < I range, the reader may refer to the study by 
Shyy and Chen [15]), with a Lewis number Le >> 1, 
which corresponds mainly to liquids. 

Our objective is to complete the numerical results 
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that have been presented on the influence of the main 
parameters Grx, N and Le on the average wall Sher- 
wood and Nusselt numbers, in order to verify the 
orders of magnitude and to present some global cor- 
relations on a wide range of parameters. This study is 
presented in two papers : the first part is dedicated to 
the analysis of the influence of the governing par- 
ameters on the mass transfer, and a study of the orders 
of magnitude of the leading terms is compared to the 
numerical results. The companion paper is concerned 
with heat transfer and flow structure, particularly of 
the multicellular flow regimes that may appear in such 
systems. 

2. PROBLEM DEFINITION 

Let us consider a two-dimensional rectangular cav- 
ity (height H, width L, aspect ratio A = H/L) where 
different, but uniform temperatures and con- 
centrations are specified at the two vertical walls 7"1 
and/ '2  (C, and C2), respectively. Zero heat and mass 
flux are assumed at the top and bottom walls of the 
enclosure, and no-slip dynamic boundary conditions 
are imposed at the walls (Fig. 1). 

In this study, the main usual hypotheses of incom- 
pressible and laminar flow are considered. The binary 
fluid is assumed to be Newtonian and its density is 
supposed to be constant, except in the driving term of 
the Navier-Stokes equation, where it varies linearly 
with the local temperature and solute mass fraction 

p(T,C) = po[1 - f lT (T-To) - f l s (C-Co)]  (1) 

with fir > 0 and fls < 0, and Ap/p < 0.1, assuming 

T1 

C1 

z (w) 

H 

Adiabatic and Impermeable Wall 

BINARY FLUIO 

T2 

C2 

L 
Adiabatic and Impermeable Wall 

that the Oberbeck-Boussinesq approximation may be 
used. The thermophysical properties of the fluid are 
taken as constants, and they are estimated at a ref- 
erence temperature To and solute mass fraction Co. 
Viscous dissipation and radiative heat transfer are 
not considered, and the Soret and Dufour effects are 
neglected. The corresponding set of governing equa- 
tions is, in dimensional terms 

Continuity equation 

V'V* = 0 (2) 

Energy conservation equation 

OT 
(~t* + V * ' V * T =  ~A*T (3) 

Species conservation equation 

dC 
~ - + V * ' V * C  = DA*C (4) 

Momentum equation 

/0V* + (V*" V*)V*) =/IV* 2 V * - V'P* - p g k  

(5) 

where P* is the pressure and g is the intensity of 
gravity. 

Equations (2)-(5) may be expressed in terms of the 
reduced velocity, temperature and concentration, V, 
0 and (~, defined as 

= H ( T -  To) ( C -  Co) 
V --V* 0 =  ~b-  (6) 

v AT AC 

with To = (T, + T:)/2, AT = (T: - T,), 
and Co = (C1 + Cz)/2, AC = ((72- CO. 

This leads to the following dimensionless con- 
servation equations : 

V" V = 0 (7) 

00 1 
~ + v .  vo = ~ao (8) 

e~, 1 
a t  + v  .vq~ = ~cA(k (9) 

c~V 
tO~- + (V. V)V = V2V - VP+ (GrxO + Grsq~)k. 

(lO) 

The parameters of the problem are the aspect ratio 
of the enclosure (A = H/L), and the classical dimen- 
sionless numbers of thermal natural convection, the 
Grashof and the Prandtl number 

x (u) 

Fig. 1. Schematic representation of the problem under study. 

gflTATH 3 v 
GrT-- , P r = -  (11) 

V2 O~ 
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and the corresponding parameters for mass transfer : to the cooperating situation (N > 0) for liquids 
the solutal Grashof number and the Schmidt number (Le >> 1) in the Pr > 1 domain. 

Gr, = &sACH’ 
_( 

v- 
) SC=;. (12) 

Two important dimensionless groups, defined as 
combinations of these parameters, will be used later 

(I) the buoyancy ratio 

Gr, /&AC 

” = Gr, = BrAT’ 

3.1. Dominating thermal buoyancy term 

(2) the Lewis number: 

52 x 
Lp = Fr zz D, 

This situation is characterized by 1 /&AT] >> 
]/&AC ] in equation (l), meaning that solute advection 

is due to a convective flow which is imposed by the 
density variation corresponding to the thermal con- 
ditions, and that it is not significantly affected by the 
concentration gradients. Thus, the orders of mag- 
nitude of thermalnaturalconvection [4] may be applied 
to fir--the thermal boundary layer thickness, and 
11’~ the vertical velocity scale 

6, - HRa, ’ 4 

M‘T -a&’ 
(16) 

The dimensionless boundary conditions resulting 
from the hypotheses are 

.u=O: B=0.5 4=0.5 u=rr=o (13) 

.Y = l/A: I) = -0.5 & = -0.5 u = II’ = 0 

(14) 

where the thermal Rayleigh number 

Ra 
T 

= g&ATH3 
L-IV 

2 = () - = 1 : :;‘-‘zz 0 $ = () I_/ = 1,‘ = 0. 

is based on the height H of the enclosure. Note that 
expressions (16) are valid in the Pr >> 1 range (the 
viscous force dominates over inertia, and balances the 
buoyancy term on the br scale). 

(15) 

The dimensionless expressions defining the heat and 
mass fluxes are obtained using a diffusive reference 
flux (kAT/H for heat transfer, DAC/H for mass trans- 
fer). The average values in a vertical plane are : 

(1) the Nusselt number 

The determination of the mass flux results from the 
study of the solutal boundary layer. Let us define (6s), 
as the solutal boundary layer thickness due to the 
thermally driven flow; (& is expected to be smaller 
than &, since Le > 1 [Fig. 2(a)]. Defining (I& as the 
vertical fluid velocity induced by the thermal effect on 
the 6, scale, it may be assumed that 

- S’ 
NM = (Pr u0 + 2Hjd.u) dz 

0 
(17) 

(2) the Sherwood number and the corresponding orders of magnitude are [4] 

3. SCALING LAWS 
3.2. Dominating solutal buoyancy term 

The purpose of the present section is to analyse the 
orders of magnitude of the different terms governing 
heat and mass transfer in such a system. In a reference 
work, Bejan [4] uses the vertical boundary layer 
approximation to extend the scaling analysis of natu- 
ral convective flows in enclosures to the problem of 
double diffusion; the analysis is performed in the 
extreme situations where either the thermal or the 
solutal component of the buoyancy force is dominant. 
This section is dedicated to the determination of the 
iimits of validity of the corresponding scaling laws, 
and to their extension to the intermediate zone where 
both the thermal and the solutal contributions appear 
in the buoyancy term. The foregoing analysis is limited 

In this situation, the same analysis applies to solutal 

natural convection and leads to similar scaling laws, 
using the solutal Rayleigh number Ra, instead of RaT 
in equation (16), to determine the solutal boundary 
layer thickness 6s and the vertical velocity ~‘s on the 
6, scale. Noting that Ra, = SC Gr, = Ra, Le N, these 
expressions may be written [4] 

I ds . - H(Ra,LeN)-’ 4 

l.“S - $(Ra,LeN)’ ’ 

(19) 

As previously underlined (Le > 1), the thermal 
boundary layer thickness is larger than 6s, and the 
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Fig. 2. The boundary layer regime in thermosolutal natural 
convection: (a) heat transfer dominated flow; (b) dom- 

inating mass transfer on the 6s scale. 

temperature variation on the 5s scale may be con- 
sidered as small. 

After recalling these results, our purpose is to deter- 
mine the limit of validity of the so-called 'heat transfer 
driven' and 'mass transfer driven' regimes, and to 
analyse the heat and mass transfer characteristics in 
the intermediate regimes. 

3.3. Intermediate zone 
3.3.1. Mass transfer. In the heat transfer dominated 

regime [equation (18)], mass transfer is due to the 
thermoconvective flow [Fig. 2(a)]. If  the solutal buoy- 
ancy force is increased at a constant value of GrT 
(increasing N), expressions (19) become valid when 
the vertical velocity scale (Ws) is one order of mag- 
nitude larger than the velocity scale that would be 
induced by the thermal effect on the same scale ((Ws)T). 

The condition for a dominant solutal force on the 6s 
scale is then 

Ws >> (Ws)T (20) 

which leads to the conclusion that equation (19) is 
valid for 

N 
- - > > l  
Lel/S 

and that equation (18) may be used when 

N 
- - < < 1  
Lel/S 

which is in agreement with the criterion used by Bejan 
[4]. This result implies that, when N is increased from 
the thermally dominated regime to the composition- 
ally dominated regime, the Sherwood number ( ~  H/f  s) 
increases from a regime where it does not depend on 
N(ShT ~ tel/3Ra l/4) to a regime where it varies as 
Nl/4(Shs ~ (RarLeN)l/4), with 

Shs ( s)T ( N 

3.3.2. Heat transfer. From the viewpoint of heat 
transfer, the two extreme situations described above 
may be summed up as follows : 

(1) If heat transfer is controlled by the thermal 
buoyancy force, the solutal buoyancy force on the 6s 
scale is not sufficient to significantly drive the flow by 
inertia on the fiT scale. The velocity scale of the flow 
due to the solutal force is of order Ws [equation (19)], 
and a condition for the thermal force to dominate on 
heat transfer is 

Ws << WT (21) 

where w v is given by equation (16), which leads to 

N 
Le << 1. (22) 

(2) If  the solutal buoyancy force on the 6s scale is 
strong enough to drive by inertia a flow whose Ws scale 
is larger than the wv scale that would be imposed by 
the thermal buoyancy force, the velocity profile is 
modified on the fit scale and equation (16) cannot be 
assessed [see Fig. 2(b)]. With the assumption that the 
scale of the flow velocity on the 6x scale is of the order 
of Ws the condition 

Ws >> WT (23) 

leads to 

N 
- -  >> 1. (24) 
Le 

It is then possible to estimate the order of magnitude 
in this latter case 
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O i 
f?r ~ o~H/ws, with Ws ~ ~I(RaTLe  N) '- (25) 

6T ~ HLeI  4(RaT N) 14 (26) 

It should be noticed that this order of  magnitude 
of  fT is under-estimated because the velocity on the 
thermal layer scale--external to the solutal boundary 
layer--decreases away from the wall, and thus the 
heat transfer is over-estimated by this approximation. 
This estimation remains acceptable if the Schmidt 
number is high enough, because the velocity scale out 
of  5s decreases less rapidly. 

The conditions that we have determined concerning 
the value of  NILe  allow us to define two domains 
where heat transfer is dominated by a flow which is 
induced either by the solutal or by the thermal buoy- 
ancy term. In each domain, the scale of  the thermal 
boundary layer thickness and of  the vertical velocity 
component  are 

fiT ~ H LeI ' 4 ( R ar N )  14 
N/Le  >> I 

D 
W T ~  W s ~ -  (RaTLeN)  I"- 

1-1 

~ r  ~ H R a T  1 4  
N/Le  << 1 

2~ 

The results concerning the orders of  magnitude 
obtained in this section are illustrated in Fig. 3. The 

previous studies (Bejan [19], B6ghein et al. [14]) con- 
sider that the zones corresponding to the two extreme 
situations may be defined on the basis of  a criterion 
related to the value of  N only : N >> 1 for the 'mass 
transfer driven regime', or N << 1 for the 'heat transfer 
driven regime'. The above analysis shows that the 
criterion also depends on the Lewis number, through 
the ratio NILe for heat transfer and through the group 
NILe t3 for mass transfer. This allows us to refine the 
characterization of  the different situations, and the 
results are in good agreement with the criterion estab- 
lished for porous media [20] and with the inversion 
condition established by Nilson [21] in the N < 0 
range. 

This figure represents the main zones determined 
by the scaling analysis. According to the values of  N 
and Le, the mass transfer or heat transfer is dominated 
by a flow which is mainly due to either the solutal or 
the thermal buoyancy force : 

(l)  Zone 1 -the thermal buoyancy force is dom- 
inating on the ST and the 8s scales ; 

(2) Zone 2- - the  thermal buoyancy force is dom- 
inating on the fT scale and the solutal buoyancy force 
is dominating on the 6s scale 

(3) Zone 3---the solutal buoyancy force is dom- 
inating on the fs and fv scales : 

(4) Zone 1' the thermal buoyancy force is dom- 
inating on the 5v scale, but it cannot be said which 
term is dominant  on the 5s scale ; 

NILelf3<<l  NILe1/3>> I 
# e 

L e  

tEe>> 1 

10-3 10 .2 l i f  t I 0  ° 101 10 2 10 3 10 4 

Fig. 3. Sketch of the various situations in the boundary layers. 
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(5) Zone 2 '-- the solutal buoyancy force is dom- 
inating on the 6s scale, but it cannot be said which 
term is dominant on the 6v scale, 

As a first conclusion of this scaling analysis, in the 
Le > 1 and Pr > 1 domain, we have shown that : 

(1) at low Nvalues (N << LEVI3), the boundary layer 
flow is driven by the thermal component of the buoy- 
ancy term; 

(2) with increasing N in the limit N/Le I/3 >> 1, the 
flow on the 6s scale is driven by the solutal buoyancy 
term, but if N/Le << 1 this term is not sufficient to 
significantly affect the heat transfer on the 6s scale. In 
this situation, the ratio of the boundary layer thick- 
nesses 6T/6S ~ ( L e N )  I/4 confirms the experimental 
result by Kamotani et al. [6] ; 

(3) if N is increased so that NILe >> 1, the flow 
driven by the compositional component of the buoy- 
ancy term is strong enough to affect the domain at 6T 
scale and thus, determines the heat transfer. 

4. NUMERICAL RESULTS 

4,1. Numerical model 
The set of coupled equations (7)-(10) governing the 

fluid flow are solved using a finite volume technique. 
The numerical procedure is inspired from the classical 
method proposed by Patankar [22]. The discretization 
technique is well-known and only a brief description 
is given hereafter. 

Discrete temperature, concentration and pressure 
values are computed at the nodes of a computational 
grid defined on the two-dimensional rectangular 
domain, while the velocity components are calculated 
at the nodes of two staggered subgrids. The con- 
servation equations are integrated over the cor- 
responding control volumes, leading to a local balance 
of the fluxes through the surfaces of the volume. The 
integrated equations are discretized using a com- 
bination of the centred and upwind schemes, accord- 
ing to the value of the local mesh Peclet number (the 
hybrid scheme of Patankar [22]). At a given iteration, 
the set of linear discretized equations derived from 
each conservation equation is solved using an ADI 
procedure, allowing for the use of fast algorithms to 
solve the tridiagonal systems. 

As the momentum equation is formulated in terms 
of the primitive variables (velocity components and 
pressure) the iterative procedure includes a pressure 
correction method to solve the pressure--velocity 
coupling. The code uses a combination of alternatives 
to the initial SIMPLE algorithm (SIMPLER [22] and SIM- 
PLEC [23]) : the velocity correction step in the SIMPLER 
algorithm uses the SIMPLEC formulation. The numeri- 
cal results presented in this paper have been obtained 
on a VP200 or a Cray-C98 vectorial computer, and 
an excellent vectorization level of the code has been 
achieved (see ref. [24]). 

Table 1. Steady-state natural convection: comparison with 
the reference solution 

Rayleigh 
number Present work De Vahl Davis [25] 

105 Oma___x 9.590 9.644 
NU 4.524 4.514 

106 ~ma~ 16.976 16.960 
Nu 8.815 8.798 

Grid 64 x 64 81 × 81 
(Irregular) (Regular) 

The convergence criterion is based on two con- 
ditions : 

(1) The ratio of the pressure correction term to the 
calculated local pressure. The maximum value of this 
ratio over the whole domain has to be less than a 
prescribed value, el, generally 10 -4 , then the con- 
tinuity equation is supposed to be satisfied ; 

(2) The residues of the different conservation equa- 
tions have to be less than e2, generally 10 -6, then the 
solution is considered to be converged. 

The validity of the code has been assessed through a 
set of numerical tests and comparisons with published 
numerical results concerning natural thermal convec- 
tion. The steady-state results have been compared (see 
Table 1) to the reference solution proposed by de Vahl 
Davis [25] for air in a square cavity. In the transient 
regime, the validation is based on the frequency of the 
stream function oscillations at the central point of the 
enclosure. At Ra = 106, the present code leads to a 
frequency of 85.7 on a 45 x 45 geometrical mesh, to 
be compared to the value proposed by Lauriat and 
Altimir [26] (86.9) using the SADI method, or by Le 
Qurr6 [27] (86.9) using a spectral method. Numerical 
solutions obtained with the hybrid scheme have been 
compared with calculations using a second-order 
upwinding scheme (QUICK [28]), especially when mul- 
ticellular regimes are found, and no significant differ- 
ence has been shown on the flow structure [29]. A 
detailed comparison with the experimental results for 
thermal convection near the density maximum of 
aqueous solutions is available [30]. 

4.2. Numerical results 
The set of numerical simulations that is presented 

in this section has been performed in order to study 
the influence of the different dimensionless 
parameters, and to verify the orders of magnitude 
deduced from the above scaling analysis. In order 
to reduce the number of simulations, the range of 
variation of some parameters is limited, and only the 
cooperating situation (N > 0) is investigated. More- 
over, this study is motivated by the analysis of ther- 
mosolutal effects on the phase change process of aque- 
ous solutions: the Prandtl number is fixed to the 
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average value of  water (Pr = 7) and the range of  Lewis 
number is Le > 1. Finally, square cavities are con- 
sidered (A = I). 

Thus, the steady-state solutions calculated in this 
parametric study are obtained over a range of  thermal 
Grashofnumbers ,  for positive buoyancy numbers and 
Lewis numbers larger than unity 

GrT ~ [103 106]. 

N ~ [o. l 1oo] 

L e 6  [1-1000] 

Average Sherwood Number  

- - -  _ . _ + _ ,  

. , i " 

J J 

Z ~  

(27) ~,r . . ' ~  

the values 0.1,0.5,  1, 5, 10, 50 and 100, and the Lewis 
number is 1, 10, 100 and 1000. Let us mention that, 10. 
for given values of  Le and N, results in the Le < 1 10 "1 10 o N =  Grs/  Grr I 
range at 1/Le and 1/N may be deduced from those 
calculations by exchanging the role of  the Nusselt and 
Sherwood numbers. 

The discretization mesh used in these computations 
is irregularly spaced and the node spacing is increasing 
geometrically from the walls to the centre of  the 
enclosure, so that at least three to four nodes are 
present in the thin solutal boundary layer. Obviously, 
the number of  nodes has to be increased with increas- 
ing Le or N, and the most extreme situation is met 
for Le = 1000 and N = 100 (Pr = 7 and GrT = 1 0 6 ) ,  

which corresponds to a solutal Rayleigh number of  
order 10". Our analysis is limited to the study of  
laminar flows, and it is important  to verify whether 
such high values may be considered. According to 
Bejan and Lage [31], the transition to the turbulent 
regime for natural convection in enclosures depends 
on the value of  the Grashof  number, and occurs for 
Gr of the order of  108. This is confirmed by the simu- 
lations by Brenier [32] at Pr = 1000, showing the tran- 
sition at Gr >~ 108. The highest value considered in 
this study corresponds to a solutal Grashof  number 
of  108 , and the assumption of  laminar flow may still 
be used. 

The following sections are dedicated to the analysis 
of  the influence of  GrT, N and Le on mass transfer 
over this range of  parameters. The heat transfer 
characteristics and the fluid flow structures are ana- 
lysed in the companion paper. 

4.2.1. Influence of the buoyancy ratio (N). Figure 4 
displays the values of  the Sherwood number Sh as a 
function of  N. Each curve corresponds to a given 
value of  the thermal Grashof  number. This graph 
is obtained for Le = 100. It may be noted that the 
Sherwood number is roughly constant for low values 
of  N:  the thermal buoyancy term is then dominant,  
and the influence of  the solutal force is negligible. At 
higher values of  N, however, the Sherwood number is 
significantly increasing, and the variation of  Sh is 
found to be of  order N TM, which agrees well with 
our analysis, and with the experimental results by 
Kamotani  et al. [6]. 

, , > 

0.215 2.15 N / L e  1/3 

Fig. 4. Influence of N on mass transfer (A = I ; Pr = 7; 
Le = 100). 

Our results also show that the transition between 
both regimes occurs for N/Le]/3"~ 1 (Fig. 4). This 
excellent agreement with the orders of  magnitude 
derived in the previous section has to be confirmed by 
the study of  the influence of  the Lewis number. 

4.2.2. Influence of the Lewis number (Le). The 
results at a given thermal Grashof  number GrT = 105 
are represented in Fig. 5, where Sh is displayed as a 
function of  the Lewis number, for different values of  
the buoyancy ratio. Again, two behaviours may be 
observed: 

(1) For  N ~< 1, the curves are superimposed, show- 
ing that the Sherwood number is globally insensitive 

Average Sherwood Number  

N = 0 . 1  ::] N = 0 . 5  A N = I .  ~ l i ~  

[ . N 10 × N=20. , N : I O 0 . - - ~ "  ~t~- 

I _ _  r Lli*" f .L.e~wr ..:~;;.t;- I I ] r IL! 

10. p r I J l  l~l i J I I I l t l [  I I I I I l f l  
lo 0 lo' 1# lo ~ 

Lewis Number  
Fig. 5. Influence of Le on mass transfer (A = 1 ; Pr = 7 ; 

Grz= 105 ) : N = 0 . 1 ; 0 . 5 ; 1 ;  10;20; 100. 
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Fig. 7. Mass transfer at the vertical wall as a function of the 
dimensionless group arising from the scaling analysis. 

to N. This is due to the fact that the flow is dominated 
by the (unchanged) thermal buoyancy term. However, 
Sh increases with the Lewis number (the solutal Ray- 
leigh number is increasing through Le). 

(2) For  higher values of N, the solutal component 
of the buoyancy term becomes dominant enough 
(N/Le '/3 > 1) to modify the flow on the scale of the 
solutal boundary layer, and Sh increases with N. 

Figure 6 gives the ( S h - N / L e  1/3) representation of 
the results at Grv = 105, for different values of the 
Lewis number. The three distinct curves, cor- 
responding to Le = 1, 10 and 100, show that there is 
a strong influence of  the Lewis number on the level of 
mass transfer. But the transition from the heat transfer 
driven regime (constant Sh) to the mass transfer 
driven regime (Sh proportional to N TM) appears 
clearly on the figure to occur for N/Ze  `/3 of order 1, 
as predicted by our analysis. 

Finally, the mass transfer variation with the Lewis 
number is different in each domain. At low values of 
N/Le  ~/3, the scaling laws indicate that the Sherwood 
number varies as Le '/3, while at high values of  N, the 
variation is closer to the Le TM law predicted by Bejan 
[19] [equation (19)]. This influence of the Lewis num- 
ber has been confirmed by a more detailed set of 
simulations at a given value of N in the regime where 
the flow is driven by the solutal buoyancy force 
(N = 20 and Grr = 105). 

4.3. Sherwood number correlation 
We now wish to present all the numerical results 

as a function of a dimensionless group which might 
translate the asymptotic behaviours that we have 
observed in this study. This correlation would express 
the mass transfer variations as a function of the ther- 
mal Grashof number, as well as of the buoyancy ratio 
and of the Lewis number over the whole range of 

interest The final correlation which satisfies the l i m  
iting behaviours taking account of the scaling a n a l y  
sis  would be of the general form 

[°rO ~e777}j Le'/3" (28) 

Such a representation is given in Fig. 7, where it 
may be seen that the main trends of the scaling analysis 
are remarkably verified by the calculations, and that 
all the numerical results cluster on a straight line with 
a relatively low dispersion. 

The best fit of our numerical results leads to the 
expression 

Sh ~ [Gr r (1  N ,,/40 + L---~.zg)] Le T M .  (29) 

In this correlation, the different exponents have 
been identified from regressions and the values are in 
fairly good agreement with the scaling laws. Extra 
calculations have been performed to show the sen- 
sitivity of the results to the Prandtl number (Pr = 0.7 
and 70). As expected, the results show that for all the 
triplets (N, Le, Grv) , the evolution of the mass transfer 
with Pr fits Sh ~ Pr 1/4. Finally, the numerical results 
lead to a correlation which is valid on the whole range 
defined at the beginning of this section 

S h = 0 . 2  RaT 1+ L-~.29 ) j 

for A = I ,  P r >  1, GrTE [103--106], Ne[0.1-100], 
Lea[I-1000, .  The agreement with the numerical 
results is not so good for the lowest values of the 
equivalent Rayleigh number (Ra,q = RaT(I + +IV~ 
Le°29)), where the difference is about 10% due to the 
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fact that the boundary layer approximation is not 
adapted any more. 

4.4. Comparison with previous' results 

As mentioned in the introduction, the comparison 
of  the present results with published data is limited to a 
narrow range of  parameters, essentially because most 
results in the bibliography have been obtained tbr 
the situation where Le = 1, in spite of  its restricted 
interest. 

4.4.1. Comparison at Le = 1. In this situation, heat 
conduction and molecular diffusion are identical, and 
the flow is the same as a purely thermal natural con- 
vection flow, with an equivalent Rayleigh number 
resulting from the addition of  the thermal and solutal 
Rayleigh numbers. A simplified form of the present 
correlation may be compared to the expressions pre- 
viously established in refs [10 and 14] 

Present Work (numerical, A = 1) : 

Sh = Nu  = 0.2 [Rav(l +N)]  t~4° 

analysis of  the orders o f  magnitude characterizing the 
boundary layer in a semi-infinite medium that for 
N / L e  ~'3 << 1, Sh ~ Ral/4Le I/3, and, for N/Lel/3 >> 1, 
Sh ~ ( Ra  N Le)  ~,4. 

Numerical ly  we find, for the square cavity for 
N / L e  °'29 << 1, Sh ~ Ra 11/4°Le°34, for N I L e  °'29 >> 1, 
Sh ~ ( Ra  N) l l/4° Le °2~. 

The experimental  results of  Kamotani  et al. [6] at 
Pr = 7, Le  = 300 and N > 3.84 give 

Le','2 / J 

t b r  N/Le ~2 << l : Sh ~ L e 3 ' S R a  TM a n d  f o r  N/Le 1'2 >> I : 
Sh ~ L e i ' 4 ( R a  N )  TM. 

This result confirms the existence of  two distinct 
regimes, and that the condition is expressed in terms 
of  the order of  magnitude of  the group N I L e  A com- 
pared to unity. The main limitation of  this exper- 
imental result comes from the fact that the sensitivity 
to the Lewis number cannot be studied. 

B6ghein et aL (numerical, A = 1) [14]: 

Sh = Nu  = 0.22 [Ray(1 + N)] °27 

Trevisan and Bejan (analytical) [10]: 

Sh = Nu  = 0.34 [RaT(I +N)]2 ' (  

The results are compared in Fig. 8. A very good 
agreement is achieved with the numerical results pro- 
posed by B6ghein et al. [14], while the agreement with 
the expression proposed by Trevisan and Bejan [10] 
is still satisfactory, since it has been theoretically 
obtained using an Oseen linearization technique. 

4.4.2. Comparison at  Le > 1. In the domain of  very 
large Lewis numbers, it has been shown from the 

Average Sherwood (or Nusselt) Number 
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Fig. 8. Comparison between the existing correlations for the 
average wall Sherwood number (Le = t). 

5.  C O N C L U S I O N  

This study is concerned with mass transfer due to 
thermosolutal natural convection with cooperating 
thermal and solutal buoyancy forces (N > 0). In terms 
of  mass transfer, the numerical results are in good 
agreement on a wide range o f  Le  and N with the orders 
of  magnitude that can be deduced from a scaling 
analysis based on the boundary layer approximation 
along a vertical plate. 

We have shown, and numerically verified, that the 
distinction between heat transfer driven flows and 
mass transfer driven flows is dependent on different 
criteria which are expressed in terms of  N / L e  for heat 
transfer, and o f  N I L e  1/3 for mass transfer. So, the scale 
on which the buoyancy forces act on the flow is of  
the same importance as the relative intensity of  the 
thermal and solutal forces. 

Finally, a general expression for the Sherwood 
number as a function of  the main parameters of  the 
problem is proposed over a very wide range. 
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